Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(11): 9694-9747, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37219929

ABSTRACT

Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.

3.
Environ Microbiol ; 24(2): 667-677, 2022 02.
Article in English | MEDLINE | ID: mdl-33955141

ABSTRACT

Manganese oxide minerals can become enriched in a variety of metals through adsorption and redox processes, and this forms the basis for a close geochemical relationship between Mn oxide phases and Co. Since oxalate-producing fungi can effect geochemical transformation of Mn oxides, an understanding of the fate of Co during such processes could provide new insights on the geochemical behaviour of Co. In this work, the transformation of Mn oxides by Aspergillus niger was investigated using a Co-bearing manganiferous laterite, and a synthetic Co-doped birnessite. A. niger could transform laterite in both fragmented and powder forms, resulting in formation of biomineral crusts that were composed of Mn oxalates hosting Co, Ni and, in transformed laterite fragments, Mg. Total transformation of Co-doped birnessite resulted in precipitation of Co-bearing Mn oxalate. Fungal transformation of the Mn oxide phases included Mn(III,IV) reduction by oxalate, and may also have involved reduction of Co(III) to Co(II). These findings demonstrate that oxalate-producing fungi can influence Co speciation in Mn oxides, with implications for other hosted metals including Al and Fe. This work also provides further understanding of the roles of fungi as geoactive agents which can inform potential applications in metal bioremediation, recycling and biorecovery.


Subject(s)
Manganese Compounds , Manganese , Aspergillus niger , Cobalt , Oxidation-Reduction , Oxides
4.
Arthritis Res Ther ; 23(1): 296, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34876237

ABSTRACT

BACKGROUND: Features of new bone formation (NBF) are common in tophaceous gout. The aim of this project was to develop a plain radiographic scoring system for NBF in gout. METHODS: Informed by a literature review, scoring systems were tested in 80 individual 1st and 5th metatarsophalangeal joints. Plain radiography scores were compared with computed tomography (CT) measurements of the same joints. The best-performing scoring system was then tested in paired sets of hand and foot radiographs obtained over 2 years from an additional 25 patients. Inter-reader reproducibility was assessed using intraclass correlation coefficients (ICC). NBF scores were correlated with plain radiographic erosion scores (using the gout-modified Sharp-van der Heijde system). RESULTS: Following a series of structured reviews of plain radiographs and scoring exercises, a semi-quantitative scoring system for sclerosis and spur was developed. In the individual joint analysis, the inter-observer ICC (95% CI) was 0.84 (0.76-0.89) for sclerosis and 0.81 (0.72-0.87) for spur. Plain radiographic sclerosis and spur scores correlated with CT measurements (r = 0.65-0.74, P < 0.001 for all analyses). For the hand and foot radiograph sets, the inter-observer ICC (95% CI) was 0.94 (0.90-0.98) for sclerosis score and 0.76 (0.65-0.84) for spur score. Sclerosis and spur scores correlated highly with plain radiographic erosion scores (r = 0.87 and 0.71 respectively), but not with change in erosion scores over 2 years (r = -0.04-0.15). CONCLUSION: A semi-quantitative plain radiographic scoring method for the assessment of NBF in gout is feasible, valid, and reproducible. This method may facilitate consistent measurement of NBF in gout.


Subject(s)
Gout , Osteogenesis , Gout/diagnostic imaging , Hand , Humans , Observer Variation , Reproducibility of Results , Severity of Illness Index
5.
Microb Biotechnol ; 14(4): 1747-1756, 2021 07.
Article in English | MEDLINE | ID: mdl-34115922

ABSTRACT

There are a need for novel, economical and efficient metal processing technologies to improve critical metal sustainability, particularly for cobalt and nickel which have extensive applications in low-carbon energy technologies. Fungal metal biorecovery processes show potential in this regard and the products of recovery are also industrially significant. Here we present a basis for selective biorecovery of Co and Ni oxalates and phosphates using reactive spent Aspergillus niger culture filtrate containing mycogenic oxalate and phosphate solubilized from struvite. Selective precipitation of oxalates was achieved by adjusting phosphate-laden filtrates to pH 2.5 prior to precipitation. Co recovery at pH 2.5 was high with a maximum of ~96% achieved, while ~60% Ni recovery was achieved, yielding microscale polyhedral biominerals. Co and Ni phosphates were precipitated at pH 7.5, following prior oxalate removal, resulting in near-total Co recovery (>99%), while Ni phosphate yields were also high with a recovery maximum of 83.0%.


Subject(s)
Cobalt , Nickel , Aspergillus niger/genetics , Biomineralization , Phosphates
6.
Lab Chip ; 20(22): 4152-4165, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33034335

ABSTRACT

Adipose is a distributed organ that performs vital endocrine and energy homeostatic functions. Hypertrophy of white adipocytes is a primary mode of both adaptive and maladaptive weight gain in animals and predicts metabolic syndrome independent of obesity. Due to the failure of conventional culture to recapitulate adipocyte hypertrophy, technology for production of adult-size adipocytes would enable applications such as in vitro testing of weight loss therapeutics. To model adaptive adipocyte hypertrophy in vitro, we designed and built fat-on-a-chip using fiber networks inspired by extracellular matrix in adipose tissue. Fiber networks extended the lifespan of differentiated adipocytes, enabling growth to adult sizes. By micropatterning preadipocytes in a native cytoarchitecture and by adjusting cell-to-cell spacing, rates of hypertrophy were controlled independent of culture time or differentiation efficiency. In vitro hypertrophy followed a nonlinear, nonexponential growth model similar to human development and elicited transcriptomic changes that increased overall similarity with primary tissue. Cells on the chip responded to simulated meals and starvation, which potentiated some adipocyte endocrine and metabolic functions. To test the utility of the platform for therapeutic development, transcriptional network analysis was performed, and retinoic acid receptors were identified as candidate drug targets. Regulation by retinoid signaling was suggested further by pharmacological modulation, where activation accelerated and inhibition slowed hypertrophy. Altogether, this work presents technology for mature adipocyte engineering, addresses the regulation of cell growth, and informs broader applications for synthetic adipose in pharmaceutical development, regenerative medicine, and cellular agriculture.


Subject(s)
Adipocytes, White , Fasting , Adipose Tissue , Adult , Animals , Humans , Hypertrophy , Obesity
7.
Environ Microbiol ; 22(4): 1588-1602, 2020 04.
Article in English | MEDLINE | ID: mdl-32079035

ABSTRACT

Struvite (magnesium ammonium phosphate-MgNH4 PO4 ·6H2 O), which can extensively crystallize in wastewater treatments, is a potential source of N and P as fertilizer, as well as a means of P conservation. However, little is known of microbial interactions with struvite which would result in element release. In this work, the geoactive fungus Aspergillus niger was investigated for struvite transformation on solid and in liquid media. Aspergillus niger was capable of solubilizing natural (fragments and powder) and synthetic struvite when incorporated into solid medium, with accompanying acidification of the media, and extensive precipitation of magnesium oxalate dihydrate (glushinskite, Mg(C2 O4 ).2H2 O) occurring under growing colonies. In liquid media, A. niger was able to solubilize natural and synthetic struvite releasing mobile phosphate (PO4 3- ) and magnesium (Mg2+ ), the latter reacting with excreted oxalate resulting in precipitation of magnesium oxalate dihydrate which also accumulated within the mycelial pellets. Struvite was also found to influence the morphology of A. niger mycelial pellets. These findings contribute further understanding of struvite solubilization, element release and secondary oxalate formation, relevant to the biogeochemical cycling of phosphate minerals, and further directions utilizing these mechanisms in environmental biotechnologies such as element biorecovery and biofertilizer applications.


Subject(s)
Aspergillus niger/metabolism , Magnesium/metabolism , Oxalic Acid/metabolism , Phosphates/metabolism , Struvite/metabolism , Biomineralization , Biotransformation , Fertilizers
8.
Nat Biomed Eng ; 4(4): 407-420, 2020 04.
Article in English | MEDLINE | ID: mdl-31988458

ABSTRACT

Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an 'interrogator' that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood-brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels. We used the robotic interrogator and a physiological multicompartmental reduced-order model of the experimental system to quantitatively predict the distribution of an inulin tracer perfused through the multi-organ human-body-on-chips. The automated culture system enables the imaging of cells in the organ chips and the repeated sampling of both the vascular and interstitial compartments without compromising fluidic coupling.


Subject(s)
Cell Culture Techniques/methods , Lab-On-A-Chip Devices , Microfluidics/methods , Robotics/methods , Blood-Brain Barrier , Brain , Calibration , Cell Culture Techniques/instrumentation , Equipment Design , Heart , Humans , Intestines , Kidney , Liver , Lung , Robotics/instrumentation , Skin
9.
Appl Microbiol Biotechnol ; 104(1): 417-425, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31781818

ABSTRACT

In this research, the capabilities of culture supernatants generated by the oxalate-producing fungus Aspergillus niger for the bioprecipitation and biorecovery of cobalt and nickel were investigated, as was the influence of extracellular polymeric substances (EPS) on these processes. The removal of cobalt from solution was >90% for all tested Co concentrations: maximal nickel recovery was >80%. Energy-dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD) confirmed the formation of cobalt and nickel oxalate. In a mixture of cobalt and nickel, cobalt oxalate appeared to predominate precipitation and was dependent on the mixture ratios of the two metals. The presence of EPS together with oxalate in solution decreased the recovery of nickel but did not influence the recovery of cobalt. Concentrations of extracellular protein showed a significant decrease after precipitation while no significant difference was found for extracellular polysaccharide concentrations before and after oxalate precipitation. These results showed that extracellular protein rather than extracellular polysaccharide played a more important role in influencing the biorecovery of metal oxalates from solution. Excitation-emission matrix (EEM) fluorescence spectroscopy showed that aromatic protein-like and hydrophobic acid-like substances from the EPS complexed with cobalt but did not for nickel. The humic acid-like substances from the EPS showed a higher affinity for cobalt than for nickel.


Subject(s)
Aspergillus niger/metabolism , Cobalt/isolation & purification , Culture Media/chemistry , Nickel/isolation & purification , Affinity Labels , Biomass , Extracellular Polymeric Substance Matrix/metabolism , Fluorescence , Fungal Polysaccharides/metabolism , Oxalates/metabolism , X-Ray Diffraction
10.
Lab Chip ; 19(18): 2993-3010, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31464325

ABSTRACT

Pancreatic ß cell function is compromised in diabetes and is typically assessed by measuring insulin secretion during glucose stimulation. Traditionally, measurement of glucose-stimulated insulin secretion involves manual liquid handling, heterogeneous stimulus delivery, and enzyme-linked immunosorbent assays that require large numbers of islets and processing time. Though microfluidic devices have been developed to address some of these limitations, traditional methods for islet testing remain the most common due to the learning curve for adopting microfluidic devices and the incompatibility of most device materials with large-scale manufacturing. We designed and built a thermoplastic, microfluidic-based Islet on a Chip compatible with commercial fabrication methods, that automates islet loading, stimulation, and insulin sensing. Inspired by the perfusion of native islets by designated arterioles and capillaries, the chip delivers synchronized glucose pulses to islets positioned in parallel channels. By flowing suspensions of human cadaveric islets onto the chip, we confirmed automatic capture of islets. Fluorescent glucose tracking demonstrated that stimulus delivery was synchronized within a two-minute window independent of the presence or size of captured islets. Insulin secretion was continuously sensed by an automated, on-chip immunoassay and quantified by fluorescence anisotropy. By integrating scalable manufacturing materials, on-line, continuous insulin measurement, and precise spatiotemporal stimulation into an easy-to-use design, the Islet on a Chip should accelerate efforts to study and develop effective treatments for diabetes.


Subject(s)
Insulin/analysis , Islets of Langerhans/chemistry , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Electric Stimulation , Equipment Design , Humans , Microfluidic Analytical Techniques/instrumentation
11.
Environ Microbiol ; 21(5): 1821-1832, 2019 05.
Article in English | MEDLINE | ID: mdl-30884070

ABSTRACT

In this study, the ability of the geoactive fungus Aspergillus niger to colonize and transform manganese nodules from the Clarion-Clipperton Zone in both solid and liquid media was investigated. Aspergillus niger was able to colonize and penetrate manganese nodules embedded in solid medium and effect extensive transformation of the mineral in both fragmented and powder forms, precipitating manganese and calcium oxalates. Transformation of manganese nodule powder also occurred in a liquid medium in which A. niger was able to remove the fine particles from suspension which were accumulated within the central region of the resulting mycelial pellets and transformed into manganese oxalate dihydrate (lindbergite) and calcium oxalate dihydrate (weddellite). These findings contribute to an understanding of environmental processes involving insoluble manganese oxides, with practical relevance to chemoorganotrophic mineral bioprocessing applications, and, to the best of our knowledge, represent the first demonstration of fundamental direct and indirect interactions between geoactive fungi and manganese nodules.


Subject(s)
Aspergillus niger/metabolism , Manganese Compounds/metabolism , Oxides/metabolism , Aspergillus niger/genetics , Aspergillus niger/growth & development , Biotransformation , Calcium Oxalate/metabolism , Minerals/metabolism , Soil Microbiology
12.
Biofabrication ; 10(2): 025004, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29337695

ABSTRACT

Organ-on-chip platforms aim to improve preclinical models for organ-level responses to novel drug compounds. Heart-on-a-chip assays in particular require tissue engineering techniques that rely on labor-intensive photolithographic fabrication or resolution-limited 3D printing of micropatterned substrates, which limits turnover and flexibility of prototyping. We present a rapid and automated method for large scale on-demand micropatterning of gelatin hydrogels for organ-on-chip applications using a novel biocompatible laser-etching approach. Fast and automated micropatterning is achieved via photosensitization of gelatin using riboflavin-5'phosphate followed by UV laser-mediated photoablation of the gel surface in user-defined patterns only limited by the resolution of the 15 µm wide laser focal point. Using this photopatterning approach, we generated microscale surface groove and pillar structures with feature dimensions on the order of 10-30 µm. The standard deviation of feature height was 0.3 µm, demonstrating robustness and reproducibility. Importantly, the UV-patterning process is non-destructive and does not alter gelatin micromechanical properties. Furthermore, as a quality control step, UV-patterned heart chip substrates were seeded with rat or human cardiac myocytes, and we verified that the resulting cardiac tissues achieved structural organization, contractile function, and long-term viability comparable to manually patterned gelatin substrates. Start-to-finish, UV-patterning shortened the time required to design and manufacture micropatterned gelatin substrates for heart-on-chip applications by up to 60% compared to traditional lithography-based approaches, providing an important technological advance enroute to automated and continuous manufacturing of organ-on-chips.


Subject(s)
Hydrogels/chemistry , Tissue Array Analysis/instrumentation , Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry , Animals , Automation , Cells, Cultured , Gelatin/chemistry , Humans , Myocytes, Cardiac/cytology , Printing, Three-Dimensional , Rats
13.
Nat Biomed Eng ; 2(12): 930-941, 2018 12.
Article in English | MEDLINE | ID: mdl-31015723

ABSTRACT

Laboratory studies of the heart use cell and tissue cultures to dissect heart function yet rely on animal models to measure pressure and volume dynamics. Here, we report tissue-engineered scale models of the human left ventricle, made of nanofibrous scaffolds that promote native-like anisotropic myocardial tissue genesis and chamber-level contractile function. Incorporating neonatal rat ventricular myocytes or cardiomyocytes derived from human induced pluripotent stem cells, the tissue-engineered ventricles have a diastolic chamber volume of ~500 µl (comparable to that of the native rat ventricle and approximately 1/250 the size of the human ventricle), and ejection fractions and contractile work 50-250 times smaller and 104-108 times smaller than the corresponding values for rodent and human ventricles, respectively. We also measured tissue coverage and alignment, calcium-transient propagation and pressure-volume loops in the presence or absence of test compounds. Moreover, we describe an instrumented bioreactor with ventricular-assist capabilities, and provide a proof-of-concept disease model of structural arrhythmia. The model ventricles can be evaluated with the same assays used in animal models and in clinical settings.


Subject(s)
Heart Ventricles/cytology , Models, Biological , Tissue Engineering , Animals , Arrhythmias, Cardiac/pathology , Computer-Aided Design , Extracellular Matrix/chemistry , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Myocardial Contraction , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Nanofibers/chemistry , Polymers/chemistry , Rats , Rats, Sprague-Dawley , Tissue Scaffolds/chemistry , Ventricular Function
14.
Exp Biol Med (Maywood) ; 242(17): 1643-1656, 2017 11.
Article in English | MEDLINE | ID: mdl-28343439

ABSTRACT

In vitro studies of cardiac physiology and drug response have traditionally been performed on individual isolated cardiomyocytes or isotropic monolayers of cells that may not mimic desired physiological traits of the laminar adult myocardium. Recent studies have reported a number of advances to Heart-on-a-Chip platforms for the fabrication of more sophisticated engineered myocardium, but cardiomyocyte immaturity remains a challenge. In the anisotropic musculature of the heart, interactions between cardiac myocytes, the extracellular matrix (ECM), and neighboring cells give rise to changes in cell shape and tissue architecture that have been implicated in both development and disease. We hypothesized that engineered myocardium fabricated from cardiac myocytes cultured in vitro could mimic the physiological characteristics and gene expression profile of adult heart muscle. To test this hypothesis, we fabricated engineered myocardium comprised of neonatal rat ventricular myocytes with laminar architectures reminiscent of that observed in the mature heart and compared their sarcomere organization, contractile performance characteristics, and cardiac gene expression profile to that of isolated adult rat ventricular muscle strips. We found that anisotropic engineered myocardium demonstrated a similar degree of global sarcomere alignment, contractile stress output, and inotropic concentration-response to the ß-adrenergic agonist isoproterenol. Moreover, the anisotropic engineered myocardium exhibited comparable myofibril related gene expression to muscle strips isolated from adult rat ventricular tissue. These results suggest that tissue architecture serves an important developmental cue for building in vitro model systems of the myocardium that could potentially recapitulate the physiological characteristics of the adult heart. Impact statement With the recent focus on developing in vitro Organ-on-Chip platforms that recapitulate tissue and organ-level physiology using immature cells derived from stem cell sources, there is a strong need to assess the ability of these engineered tissues to adopt a mature phenotype. In the present study, we compared and contrasted engineered tissues fabricated from neonatal rat ventricular myocytes in a Heart-on-a-Chip platform to ventricular muscle strips isolated from adult rats. The results of this study support the notion that engineered tissues fabricated from immature cells have the potential to mimic mature tissues in an Organ-on-Chip platform.


Subject(s)
Heart Ventricles/cytology , Microchip Analytical Procedures/methods , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Tissue Engineering/methods , Ventricular Function/physiology , Animals , Cell Differentiation , Cells, Cultured , Gene Expression Profiling , Lab-On-A-Chip Devices , Myocardial Contraction/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...